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A B S T R A C T   

The structural design of planetary roller screw mechanism (PRSM) with lower contact stress is beneficial to delay 
the fatigue failure and prolong the service life. However, few studies focused on this field and a reasonable 
contact model is therefore required due to its complexity structure. In this paper, a developed contact model is 
established for PRSM, and a process-based parameterization method is proposed to precisely calculate the 
contact characteristics along with the change of parameters. Based on the in-depth study of the parameter 
sensitivities of contact characteristics, the structure design to reduce contact stress for PRSM is realized through 
the multi-objective optimization under the proposed geometric constraints. The validity of this model is well 
verified by finite element method.   

1. Introduction 

Planetary roller screw mechanism (PRSM) is one of the key actuators 
in electromechanical servo system [1], and is widely used in military 
and civil fields such as aircraft [2], radio telescope [3], robot [4] and 
food processing [5]. As a precision mechanical transmission device, the 
PRSM can transfer the motion and force through a series of rollers 
making planetary motions between the nut and the screw. The 
multi-body and multi-point contacts therefore contribute to a high load 
carrying capacity of the PRSM. Meanwhile, each contact point expands 
into an elliptical region after loading, and the shape and size of which 
will then affect the properties of friction and lubrication [6,7], and 
further affect the transmission efficiency [8] and thermal characteristics 
[9]. Besides, a large stress can be generated even under a slight load 
since the area of the contact ellipse is small enough. The stress distri-
bution in this region, especially the maximum stress, has an important 
impact on the fatigue wear [10] and plastic deformation [11], which 
considerably determines the service life of PRSM [12]. In addition, the 
nonlinearity of contact deformation will contribute to the non-uniform 
load distribution among threads by affecting the structural stiffness of 
PRSM [13]. Furthermore, the contact positions are also closely related to 
the clearances of mating thread surfaces [14,15], the kinematics [16,17] 

and dynamics [18]. Therefore, the contact characteristics analysis of 
PRSM is the foundation for the above studies. 

In recent years, many beneficial methods and conclusions have been 
presented by scholars. The classical method to study the contact char-
acteristics is based on Hertz contact theory, and the key is to obtain the 
principal curvatures at the contact point of two objects. The contact 
position can be ignored by treating each thread tooth of the roller as an 
equivalent ball with approximate principal curvatures, and this method 
has been widely used in many literatures [6–9,11–13]. However, the 
application of differential geometry theory enables a more accurate 
study at the actual contact point considering thread profile features. 
Jones et al. [19] established the contact model in PRSM based on the 
principle of conjugate surfaces, and analyzed the influence of some 
parameters on the curvature radii, contact stress and deformation. 
Sandu et al. studied the thread contact geometry and surface assembly in 
PRSM [20], and deduced some contact characteristics based on differ-
ential geometry theory and Hertz theory [16]. Similarly, based on the 
above two theories, Ma et al. investigated the local contact character-
istics [21] and the static contact with friction [22] of PRSM, and con-
ducted sensitivity analysis of various structural parameters. In addition, 
the contact characteristics of PRSM can be studied based on fractal 
theory [4], and the finite element method (FEM) is also a common way 
of analysis and verification [21–23]. 
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Nomenclature 

S, N, R denote the screw, nut, roller 
* S, N, denotes the screw-roller or nut-roller interface 
ƮƮ circular helix 
Σu, Σl upper and lower contact surface of the thread 
(r, α) polar coordinate of the projection of a point 
rSc, αSc contact radius and deflection angle of screw 
rRSc, αRSc contact radius and deflection angle of roller on screw-roller 

interface 
rNc, αNc contact radius and deflection angle of nut 
rRNc, αRNc contact radius and deflection angle of roller on nut-roller 

interface 
re radius of the arc thread profile of the roller 
Ω primary area 
Є plane determined by a point and z-axis 
l lead of the thread 
ψ(r, α) parametric equation of the space helical surface 
ψr, ψα the first partial derivative of ψ(r, a) 
ψrr, ψrα, ψαα the second partial derivative of ψ(r, a) 
ϕ(r) thread profile function 
ϕ′(r) the first derivative of ϕ(r) 
ϕ′′(r) the second derivative of ϕ(r) 
N, n normal vector and unit normal vector of the surface 
κn normal curvature 
E, F, G the first fundamental form of a general parametric surface 
L, M, N the second fundamental form of a general parametric 

surface 
e1, e2 the first and second principal directions 
e*1, e*2 the first and second principal directions of the screw or nut 
eR*1, eR*2 the first and second principal directions of the roller 
κ1, κ2 the first and second principal curvatures 
κ*1, κ*2 the first and second principal curvatures of the screw or nut 
κR*1, κR*2 the first and second principal curvatures of the roller 
nSc, nRSc unit normal vectors at the contact point of screw and roller 
NNc, nRNc unit normal vectors at the contact point of nut and roller 

ζ = 1, ζ = − 1 Boolean variable, represents the lower and upper 
helical surface of thread 

ζSc, ζRSc the contact helical surfaces of the screw and roller 
ζNc, ζRNc the contact helical surfaces of the nut and roller 
λR helix angle of roller 
Q*R, F*R, F*Rt, F*Rr normal force, axial force, tangential force and 

radial force 
γR* angle between the first principal planes of the contact 

surfaces 
γ1, γ2 angle between x-axis and xR*-axis, angle between x-axis 

and x*-axis 
f(κ) function of principal curvatures 
Σκ curvature sum 
A, B coefficient 
K(e), L(e) complete elliptic integrals of the first and second kinds 
a, b semimajor and semiminor axes of the contact ellipse 
ke the ratio of b to a 
e eccentricity of the contact ellipse 
E’ equivalent elastic modulus 
δH, σH contact deformation, contact stress 
β = (βS, βR, βN) design variables 
βl, βu lower and upper limit of the design space 
CX design constants 
σHSR =gSR(β, CX) objective function of the contact stress between 

screw and roller 
σHNR=gNR(β, CX) objective function of the contact stress between 

nut and roller 
aS, aR, aN root widths of screw, roller and nut 
cS, cR, cN crest widths of screw, roller and nut 
εSRc, εNRc axial clearance between the thread surfaces to be 

contacted 
εST, εNT axial clearance from the thread crown of screw or nut to 

the corresponding helical surface of roller 
εRST, εRNT, axial clearance from the thread crown of roller to the 

corresponding helical surface of screw or nut 
haS, haR, haN thread addendum of screw, roller and nut  

Fig. 1. Structural diagram and independent part coordinate systems of PRSM.  
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These studies have promoted the development of PRSM, but there 
are still some problems to be improved. Some literatures used complex 
coordinate systems with tedious coordinate transformations, which 
increased computational costs but the contact characteristics did not 
change with the choice of coordinate systems. Also, the existing litera-
tures mainly studied the sensitivity of parameters through mono-factor 
analysis, namely, a specific parameter changes within a given and usu-
ally large range while keeping other parameters constant. However, this 
method ignores the interaction and restriction between the parameters 
of the actual product. Furthermore, threads are the most vulnerable 
parts of the PRSM [5,11], but few improvements have been reported. 
Therefore, this paper focuses on the structural design of the thread 
profiles through multi-objective optimization, so as to pursue lower 
contact stress on the screw-roller and nut-roller interfaces simulta-
neously, which is of great significance for slowing down fatigue failure, 
preventing plastic deformation and prolonging the service life of PRSM. 
The structure of this paper are as follows: 

Firstly, in Section 2, the developed contact model of PRSM is 
established by using the independent coordinate systems of screw, roller 
and nut without coordinate transformation. Based on the differential 
geometry theory, continuous tangency conditions and Hertz contact 
theory, the contact characteristics of PRSM are deeply studied in a 
parameterized and process-based way. The principal curvatures and 
directions, local contact geometry and contact parameters at the exact 
contact position are calculated in detail. Then, in Section 3, the 
parameter sensitivities on the contact characteristics are comprehen-
sively revealed by the design of experiments (DOE). Subsequently, the 
structural parameters most sensitive to contact stress are selected as 
design variables, and multi-objective optimization under the proposed 
geometric constraints is further conducted to obtain the optimal struc-
tural design. Next, the optimization results verified by FEM are dis-
cussed in Section 4. Finally, Section 5 presented the main conclusions of 
this paper. 

2. Theory and methodology 

2.1. Parametric equation 

The PRSM consists of a screw, a nut, multiple rollers, two ring gears 
and two retainers. The threads of screw, roller and nut are the main load 
bearing parts and can be regarded as the continuous convex or concave 
structure formed by a specific profile along the circular helix ƮƮ. There-
fore, the thread surface can be divided into upper and lower spatial 
helical surfaces, as shown in Fig. 1, where the blue one represents the 
upper contact surface of the thread and is denoted by symbol Σu, while 
the red one represents the lower contact surface of the thread and is 
denoted by symbol Σl. 

By establishing the Cartesian coordinate system o-xyz, the position of 
an arbitrary point Q on the thread can be accurately described, in which 
the z-axis is on the axis of the corresponding part, and the upper and 
lower profiles are symmetrical about the x axis to distinguish the helical 
surface Σu and Σl. Then, the Q is not only on the helical surface, but also 
on the plane Є determined by Q and z-axis, and its coordinates are (x, y, 
z). If the angle between the plane xoz and Є is α, and the distance from Q 
to the z-axis is r, then the polar coordinate of the projection of Q is (r, α) 
on a primary area Ω of plane xoy, i.e., the helical surface Σu or Σl can be 
obtained by mapping from Ω. Therefore, the parametric equation of an 
arbitrary point on the spatial helical surface can be expressed as 
⎧
⎨

⎩

x = r cos α
y = r sin α (r,α) ∈ Ω
z = ζϕ(r) + αl/(2π)

(1)  

where ζ is a Boolean variable, ζ = 1 represents lower helical surface of 
thread, whereas ζ = − 1 represents the upper one. ϕ(r) is the function of 
thread profile determined only by the parameter r, specifying that ϕ(r)>

0 in its domain of definition d2/2≤r ≤ d1/2, where d1 and d2 refer to the 
major and minor diameter of the thread. Besides, d0, P and l are the 
nominal diameter, pitch and lead, respectively. And l=np, n is the starts 
of the thread. 

In general, the screw and nut are external and internal trapezoidal 
multi-start threads with equal number of starts. The roller is a single- 
start external thread with a convex arc profile. Then three indepen-
dent coordinate systems of the screw, nut and roller are established 
based on their thread characteristics, as shown in Fig. 1, which can 
effectively avoid complex coordinate transformation in the subsequent 
calculation process. It should be noted that the subscripts S, N and R 
denote the screw, nut and roller throughout this paper, respectively. 
Accordingly, the thread profile function of screw and nut, i.e., ϕS(rS) and 
ϕN(rN) can be deduced as 

ϕS(rS) = (rS − dS0/2)tan βS +(PS − hS)/2 (dS2/2 ≤ rS ≤ dS1/2) (2)  

ϕN(rN) = (PN − hN)/2 − (rN − dN0/2)tan βN (dN2/2 ≤ rN ≤ dN1/2) (3)  

Where d*0, d*1, d*2, h*, β* and r* (*=S, N) are the nominal diameter, major 
diameter, minor diameter, thread thickness, flank angle and the position 
parameter of the point on the thread profile of the screw or the nut. In 
Fig. 1, r*0, r*1 and r*2 correspond in turn to the radii of d*0, d*1 and d*2, 
and rN3 is radii at the external diameter dN3 of the nut. Similarly, the 
parameters described above are denoted by subscript R for the roller. 
When the center oe of the arc thread profile is located on the axis of the 
roller, its radius can be deduced as re=dR0/2sinβR, and the thread profile 
function ϕR(rR) is 

ϕR(rR) = re cos βR +(PR − hR)/2 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rR
2

√
(dR2/2 ≤ rR ≤ dR1/2)

(4)  

2.2. Local contact characteristics 

2.2.1. Principal curvatures and directions 
The contact between the threads of roller and screw (nut) is actually 

the contact between two spatial helical surfaces with different principal 
curvatures. Therefore, the principal curvatures are critical for studying 
the contact characteristics. 

Firstly, the parametric equation Eq.(1) of the space helical surface 
can be expressed in vector form as ψ(r, α)= [rcosα, rsinα, ζϕ(r)+αl/ 
(2π)]. Then, for parameters r and α of the helical surface Σ: ψ = ψ(r, α), 
(r, α)∈Ω, the partial derivatives of the first order ψr and ψα and the 
second order ψrr, ψrα and ψαα can be derived as 
⎧
⎪⎪⎨

⎪⎪⎩

ψr =
∂ψ
∂r

= [cos α, sin α, ζϕ′(r)]

ψα =
∂ψ
∂α = [ − r sin α, r cos α, l/(2π)]

(5)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψrr =
∂2ψ
∂r2 = [0, 0, ζϕ′′(r)]

ψrα =
∂2ψ
∂r∂α = [ − sin α, cos α, 0]

ψαα =
∂2ψ
∂α2 = [ − r cos α, − r sin α, 0]

(6)  

Where ϕ՛(r) and ϕ՛՛(r) are the first and second derivatives of thread 
profile function to the parameter r, respectively. These two expressions 
for the screw, nut and roller can be obtained from Eq.(2)~Eq.(4), 
namely: 
{

ϕS
′

(rS) = tan βS
ϕS

′ ′

(rS) = 0
(7)  

{
ϕN

′

(rN) = − tan βN
ϕN

′ ′

(rN) = 0
(8) 
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{
ϕR

′

(rR) = rR⋅
(
re

2 − rR
2)− 1/2

ϕR
′ ′

(rR) =
(
re

2 − rR
2)− 1/2

+ rR
2⋅
(
re

2 − rR
2)− 3/2 (9) 

Besides, if ψr×ψα∕= 0 at an arbitrary point on the helical surface Σ: 
ψ = ψ(r, a), (r, α)∈Ω, the normal vector N of the surface at that point can 
be represented by ψr×ψα. However, in order to avoid the change of 
contact characteristics caused by different choices of upper or lower 
helical surfaces, it is necessary to uniformly specify that the normal di-
rection points to the inside of the thread teeth, namely, the normal 
vector N is defined as 

N = ζψr × ψα

= [ζl sin α/(2π) − r cos αϕ′(r), − ζl cos α/(2π) − r sin αϕ′(r), ζr] (10) 

Further, the unit normal vector can be expressed as n=N/|N|, then 
that of screw, nut and roller can be deduced accordingly as 

nS =ζS

{
1+[lS/(2πrS)]

2
+ tan2βS

}− 1/2
⋅

⎡

⎣
lS sinαS/(2πrS)− ζS cosαS tanβS
− lS cosαS/(2πrS)− ζS sinαS tanβS

1

⎤

⎦

T

(11)  

nN =ζN

{
1+[lN/(2πrN)]

2
+ tan2βN

}− 1/2
⋅

⎡

⎣
lN sinαN/2πrN +ζN cosαN tanβN
− lN cosαN/2πrN +ζN sinαN tanβN

1

⎤

⎦

T

(12)  

nR = ζR

[

1 +

(
lR

2πrR

)2

+
rR

2

re
2 − rR

2

]− 1/2

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

lR sin αR

2πrR
−

ζR cos αRrR
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rR
2

√

−
lR cos αR

2πrR
−

ζR sin αRrR
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rR
2

√

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

(13) 

Based on the differential geometry theory [24], the normal curvature 
κn of an arbitrary point on the surface Σ: ψ = ψ(r, a), (r, α)∈Ω along the 
direction (d)=dr:dα at that point is 

κn =
П
І
=

d2ψ⋅n
dψ2 =

Ldr2 + 2Mdrdα + Ndα2

Edr2 + 2Fdrdα + Gdα2 (14)  

where I and II are the first and second fundamental form of a general 
parametric surface, and the coefficients are given by 
⎧
⎨

⎩

E = ψr⋅ψr = 1 + [ϕ′(r)]2

F = ψr⋅ψα = ζlϕ′(r)/(2π)
G = ψα⋅ψα = r2 + [l/(2π)]2

(15)  

⎧
⎪⎨

⎪⎩

L = ψrr⋅n = rϕ′′(r)⋅
{

r2 + [l/(2π)]2 + [rϕ′(r)]2
}− 1/2

M = ψrα⋅n = − ζl/(2π)⋅
{

r2 + [l/(2π)]2 + [rϕ′(r)]2
}− 1/2

N = ψαα⋅n = r2ϕ′(r)⋅
{

r2 + [l/(2π)]2 + [rϕ′(r)]2
}− 1/2

(16) 

The principal curvatures κ1 and κ2 are the maximum and minimum of 
the normal curvature at a given point on the surface, and satisfy the 
following relationship 

K = κ1⋅κ2 =
(
LN − M2)/( EG − F2) (17)  

H = (κ1 + κ2)/2 = (LG − 2MF +NE)
/(

2EG − 2F2) (18)  

where K and H represent the Gauss curvature and mean curvature 
respectively. The shape of the surface near this point is convex when 
K> 0, and its shape is approximately saddle surface when K< 0. 
Furthermore, κ1 and κ2 can be expressed by K and H as 

κ1, κ2 = H ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H2 − K

√
(19) 

The directions corresponding to the principal curvatures κ1 and κ2 
are the two principal directions of the surface at this point, which are 
both orthogonal and conjugate. On this basis, the unit direction vectors 
e1 and e2 of the first and second principal directions can be deduced as 

e1, e2 =
ψr

dr
dα + ψα⃒

⃒ψr
dr
dα + ψα

⃒
⃒

(20) 

Except for F/L=F/M=G/N, there is: 

dr
dα =

−

(

EN − GL
)

±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(EN − GL)2
− 4

(
EM − FL

)(
FN − GM

)√

2(EM − FL)
(21) 

The unit direction vectors e1, e2 and the unit normal vector n will 
form a standard orthonormal basis at any point of the surface. The 
planes determined by e1, e2 and n are called the first and second prin-
cipal planes, and the principal curvatures of the normal section of the 
surface on these two planes are κ1 and κ2 respectively. To avoid confu-
sion, it is specified |κ1|< |κ2| in this paper, i.e., the first principal di-
rection is defined as the direction with small absolute value of curvature, 
and vice versa is the second principal direction. Moreover, the principal 
curvatures and directions of the surface at a point are exactly the ei-
genvalues and eigenvectors of the Weingarten transformation at that 
point. Where, Weingarten matrix is: 

W =

[
L M
M N

][
E F
F G

]− 1

(22) 

Then the principal curvatures and principal directions can be 

Fig. 2. Static force analysis at contact points.  
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deduced as 
[

κ1 0
0 κ2

]

=

[
e11 e12
e21 e22

]− 1

W
[

e11 e12
e21 e22

]

(23)  

e1 =
e11ψr + e21ψα
|e11ψr + e21ψα|

and e2 =
e12ψr + e22ψα
|e12ψr + e22ψα|

(24) 

In this way, κ1, κ2, e1 and e2 can be calculated more effectively based 
on the programming language. 

2.2.2. Contact position 
Based on the calculation of principal curvatures at an arbitrary point 

on the helical surface, the precise contact positions on screw-roller and 
nut-roller interfaces are particularly important for the study of contact 
characteristics. Therefore, the static force analysis is performed at the 
contact points of PRSM with single thread pairs on both sides of roller, as 
shown in Fig. 2. 

On the screw-roller interface, the contact radius and deflection angle 
of screw are rSc and αSc, and those of roller are rRSc and αRSc, respectively. 
Therefore, the parametric coordinates of the contact point on the xSoSyS 
plane of the screw are (rSc, αSc), and that on the xRoRyR plane of the roller 
are (rRSc, π-αRSc). Based on the continuous tangency condition [14], the 
unit normal vectors of the two mating surfaces should be collinear, i.e., 
nSc= -nRSc. Combining Eq.(11), Eq.(13) and the installation position of 
screw and roller, the quaternion equation is given as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lS sinαSc

2πrSc
− ζSc cosαSc tanβS =

lR sin(π − αRSc)

2πrRSc
−

ζRScrRSc cos(π − αRSc)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rRSc
2

√

−
lS cosαSc

2πrSc
− ζSc sinαSc tanβS =−

lR cos(π − αRSc)

2πrRSc
−

ζRcrRSc sin(π − αRSc)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rRSc
2

√

rSc sinαSc =rRSc sinαRSc

rSc cosαSc+rRSc cosαRSc =(dS0+dR0)/2
(25)  

where ζSc= 1 indicates that the contact point is located on the lower 
helical surface of screw, while ζSc= − 1 indicates that the contact point is 
on the upper helical surface. ζRSc= -ζSc represents the surface on the 
roller in contact with the screw. 

Similarly, the unit normal vectors of nut and roller satisfy nNc= - 
nRNc. Then, the contact radii and the deflection angle, rNc, rRNc αNc and 
αRNc, are solved by Eq.(26). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lN sin αNc

2πrNc
+ ζNc cos αNc tan βN =

lR sin αRNc

2πrRNc
−

ζRNc cos αRNcrRNc
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rRNc
2

√

−
lN cos αNc

2πrNc
+ ζNc sin αNc tan βN = −

lR cos αRNc

2πrRNc
−

ζRNc sin αRNcrRNc
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
re

2 − rRNc
2

√

rNc sin αNc = rRNc sin αRNc

rNc cos αNc − rRNc cos αrRNc = (dN0 − dR0)/2
(26)  

where ζRNc= -ζRSc and ζNc= ζRSc represent the contact helical surfaces of 
the nut and roller. 

By contacting the screw and nut on both sides of the roller, the 

Fig. 3. Local contact geometry.  
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rotational motion of the screw is converted into linear thrust of the nut. 
From the force analysis illustrated in Fig. 2, the force on the thread at the 
contact point can be decomposed into 
⎧
⎪⎪⎨

⎪⎪⎩

Q∗R = F∗R/(cos θ cos λR)

F∗Rt = F∗R tan λR
F∗Rr = F∗R tan θ/cos λR
F∗Rr = F∗R tan βR

(∗ = S,N) (27)  

where the subscript * (*=S, N) denotes the screw-roller or nut-roller 
interface, Q*R, F*R, F*Rt and F*Rr represent the normal force, axial 
force, tangential force and radial force respectively. Therefore, the 
relationship between the contact angle θ, the helix angle λR and flank 
angle βR of the roller can be deduced as: 
{

tan θ = tan βR cos λR
tan λR = PR/πdR0

(28)  

2.2.3. Local contact geometry 
The material near the initial contact point of the two helical surfaces 

will deform and expand into an elliptical region after loading, and its 
semimajor and semiminor axes are a and b respectively, as shown in 
Fig. 3. The coordinate systems with the contact point as the origin are 
established within the tangent plane, and the major and minor axis of 
the contact ellipse are located on the x-axis and y-axis. The principal 
directions e*1 and e*2 of the screw or nut determine the x*-axis and y*- 
axis in the o-x*y* coordinate system, while the xR*-axis and yR*-axis of o- 
xR*yR* are collinear with the principal directions eR*1 and eR*2 of the 
roller, respectively. The angle between the first principal planes of the 
two contact surfaces is γR*, and γR*∈[0,π/2],which is defined by 

γR∗ = min[arccos(e∗1⋅eR∗1), π − arccos(e∗1⋅eR∗1)] (∗=S,N) (29) 

Then, the surface near the contact point of the screw (or nut) and 
roller can be expressed as 

z∗ = −
(
κ∗1x2

∗ + κ∗2y2
∗

)/
2 (30)  

zR∗ =
(
κR∗1x2

R∗ + κR∗2y2
R∗

)/
2 (31)  

where κ*1 and κ*2 are the principal curvatures of the screw or nut, κR*1 
and κR*2 are the principal curvatures of the roller on the corresponding 
contact side. The points (x*, y*, z*) and (xR*, yR*, zR*) can be changed into 
(x, y, z*) and (x, y, zR*) by coordinate transformation. Therefore, the 
distance between these two points before deformation can be expressed 
as 

h = z∗ − zR∗ = Ax2 +By2 +Cxy (32)  

C = [(κ∗2 − κ∗1)sin 2γ2 − (κR∗2 − κR∗1)sin 2γ1]/2 (33)  

where γ1 is the angle between x-axis and xR*-axis, γ2 is the angle between 
x-axis and x*-axis. If the local contact geometry satisfies the triangle in 
Fig. 3 [25], then C= 0. Therefore, based on the law of sines and cosines, 
there are: 

f (κ)
sin(π − 2γR∗2)

=
κ∗2 − κ∗1

2 sin 2γ1
=

κR∗2 − κR∗1

2 sin 2γ2
(34)  

f (κ) =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(κ∗2 − κ∗1)
2
+ (κR∗2 − κR∗1)

2
+ 2(κ∗2 − κ∗1)(κR∗2 − κR∗1)cos 2γR∗

√

(35)  

where f(κ) is the function of principal curvatures. From Eq.(36), γ1 and γ2 
can be obtained by 
⎧
⎪⎪⎨

⎪⎪⎩

γ1 =
1
2

arcsin{(κ∗2 − κ∗1)sin 2γR∗/[2f(κ)]}

γ2 =
1
2

arcsin{(κR∗2 − κR∗1)sin 2γR∗/[2f(κ)]}
(36) 

In this case, Eq.(32) can be written as h=Ax2 +By2, and the rela-
tionship between the positive constants A and B is 
{

A + B = (κR∗2 + κR∗1 + κ∗2 + κ∗1)/2 = Σκ/2
B − A = [(κR∗2 − κR∗1)cos 2γ1 + (κ∗2 − κ∗1)cos 2γ2 ]/2 = f(κ) (37) 

Therefore, the coefficients A and B can be obtained by the curvature 
sum Σκ and curvature function f(κ), namely, 
{

A = Σκ/4 − f (κ)/2
B = Σκ/4 + f (κ)/2 (38)  

2.2.4. Contact parameters 
Based on Hertz contact theory, two contacting helical surfaces will 

deform under the normal load Q*R (*=S, N), i.e., the points (x, y, z*) and 
(x, y, zR*) will move the displacement u* and uR* along the normal di-
rection and overlap with each other. It can be described as 

uR∗ + u∗ = δH − Ax2 − By2 (39)  

where δH is the elastic deformation of two contacts. 
Within the contact ellipse x2/a2 + y2/b2 = 1, the contact stress σ(x,y) 

at an arbitrary point (x,y) is 

σ(x, y) = σH

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (x/a)2
− (y/b)2

√

(40)  

where σH is the maximum value of contact stress in the contact ellipse, 
and the contact stress mentioned in the following study refers to σH. 
Based on the force equilibrium conditions, there is Q∗R = ∬ σ(x, y)dxdy, 
and after integration σH can be expressed as: 

σH = 3Q∗R/(2πab) (41) 

Furthermore, the displacement u of the point (x,y) on the surface 
along the normal direction [25] is 

u =
[(

1 − ν2)/(πE)
]
⋅
∫∫

Ω
σ(ξ, η)

/
[
(x − ξ)2

+ (y − η)2 ]− 1/2
dξdη (42)  

where ν and E represent Poisson’s ratio and elastic modulus. Similarly, 
by integrating, there is 

u =
bσH(1 − ν2)

πE

[

K(e) −
K(e) − L(e)

e2 ⋅
x2

a2 −
(e2 − 1)K(e) + L(e)

e2 ⋅
y2

b2

]

(43)  

K(e) =
∫ π/2

0

(
1 − e2sin2φ

)− 1/2dφ (44)  

L(e) =
∫ π/2

0

(
1 − e2sin2φ

)1/2dφ (45)  

where e= (1-ke)1/2 is the eccentricity of the contact ellipse, and ke = b/a. 
K(e) and L(e) are complete elliptic integrals of the first and second kinds. 

The Poisson’s ratio and elastic modulus of the screw or nut are ν* and 
E*, and these of the roller are νR* and ER*, then u* and uR* can be obtained 
from Eq.(43). Substituting them into Eq.(39) gives 

bσH

E′

[

K(e) −
K(e) − L(e)

e2 ⋅
x2

a2 −
(e2 − 1)K(e) + L(e)

e2 ⋅
y2

b2

]

= δ − Ax2 − By2

(46)  

where E′ = [E− 1
R (1 − ν2

R) + E− 1
∗ (1 − ν2

∗ )]
− 1 is the equivalent elastic 

modulus. 
Then, by substituting Eq.(42) into Eq.(47) and comparing the co-

efficients of the same type at both ends of the equation, the contact 
parameters are as derived follows: 

A
B
=

(1 − e2)[K(e) − L(e)]
(e2 − 1)K(e) + L(e)

(47) 
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a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3L(e)Q∗R

/(
πE′

∑
κk2

e

)
3

√

(48)  

b =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3L(e)keQ∗R

/(
πE′

∑
κ
)

3

√

(49)  

δH = K(e)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

9
∑

κke
2Q∗R

2
/[

8π2E′2L(e)
]3

√

(50) 

To sum up, the flowchart for calculating contact parameters is shown 
in Fig. 4, which can be solved in a parameterized and process-based way. 

2.3. 2.3 Numerical example 

The structural and material parameters in literature [13] are further 
used as the numerical example in this paper, and the details are shown in 
Tables A1 and A2 in the appendix. Under an axial load of 300 N, the 
lower helical surface ΣSl of the screw is in contact with the upper helical 
surface ΣRu of the roller, and the lower helical surface ΣRl of the roller is 
in contact with the upper helical surface ΣNu of the nut. Based on the 
calculation process shown in Fig. 4, the detailed contact characteristics 
obtained are listed in Table 1. 

The results show the principal curvatures κS1⋅κS2 < 0 and κN1⋅κN2 < 0, 
indicating that the helical surfaces of screw and nut are shaped like 

saddle surface near the contact point. However, κRS1⋅κRS2 > 0 and 
κRN1⋅κRN2 > 0 indicates that the helical surface of roller is convex near 
the contact point. Besides, the helical surface of roller is more curved 
than that of the screw and nut due to its arc-shaped thread profile, 
resulting in κRS1 > κS2 and κRN1 > κN2. Furthermore, the different cur-
vatures, especially ΣκSR> ΣκNR, ultimately contributes to greater contact 
stress and deformation at the screw-roller interface with a smaller 
elliptical contact area than those at the nut-roller interface. 

In order to visually display the principal directions and contact stress 
distribution, the contact characteristics are plotted on the spatial 
tangent planes. As shown in Fig. 5, the xc-axis is on the line where the 
axis of the screw or nut points to the axis of the roller. At the contact 
point of the screw-roller interface, the actual angle between eS1 and eRS1 
is obtuse, therefore the xS-axis is in the opposite direction of eS1 to 
ensure that γRS∈[0,π/2]. In addition, the yS-Axis axis is opposite to eS2, 
thus making the coordinate system o-xSyS a right-handed system, and the 
yRS-axis, yRN-axis are also specified in this way. 

Moreover, Fig. 5 depicts that the contact point between the nut and 
roller is located on the xc-axis, its horizontal projection coordinate of is 
(40, 0), and the contact radii are equal to their nominal radii respec-
tively. However, that coordinate of the contact point between the screw 
and roller is (24.1193, − 1.5662), indicating that there is a certain 
deflection angle and the contact radii are greater than their nominal 
radii. The main reason for the above phenomenon is that the screw and 

Fig. 4. Flowchart for calculating contact parameters.  
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roller with different helix angles are in convex contact, while the nut and 
roller with equal helix angles are in concave contact with the given 
parameters. 

3. Mathematical modeling of multi-objective optimization 

3.1. Design of experiments 

The Design of experiments (DOE) method [11] can effectively 
identify the most sensitive factors to the contact characteristics of the 
helical surface in PRSM with considering the interaction of all param-
eters, and then provide the choice of design variables for multi-objective 
optimization. The flowchart of sensitivity ranking based on DOE is 
shown in Fig. 6. 

The initial input parameters include structural parameters, material 
properties and axial applied load as shown in Table A1 and Table A2, 

marked as x = (x1, x2,•••, xi,•••, xn), i = 1, 2,•••, n, where n represents 
the total number of input parameters and xi is the ith parameter. The 
input parameters are then sampled in the range of x ± 3‰x by Latin 
hypercube technique [26] with a sampling number of N = 2000. 
Consequently, the sampling vectors are generated, denoted as xj= (x1j, 
x2j,•••, xij,•••,xnj), j = 1, 2,•••, N, and xij is the jth sample of the ith input 
parameter. Besides, the sampling matrix is recorded as X = (x1, x2,•••, 
xi,•••, xn) and xi= (xi1, xi2,•••, xij,•••,xiN)T is the sampling vector of xi. 

During the execution of DOE, the responses for each xj, including the 
contact position, contact radius, deflection angle, principal curvatures 
and contact stress, are calculated and recorded as yj= (y1j, y2j,•••, 
ykj,•••,ymj), k = 1, 2,•••, m, where m is the total number of responses. 
The matrix for all responses is denoted as Y= (y1, y2,•••, yk,•••, ym), 
and yk= (yk1, yk2,•••, ykj,•••,ykN)T is the sampling vector of the kth 

response yk. 
The data in the matrices X and Y need to be normalized within the 

range [− 1,1] to reduce the influence of orders of magnitude on the 
analysis, and then the polynomial response surface method is used to fit 
these data into the mathematical model yk = a0 +

∑n
i=1aixi. Finally, the 

coefficients Ai = ai/
∑n

i=1ai in the form of percentage, can reflect the 
contribution of each input parameter to the influence of the kth response 
and are plotted in an ordered bar graph, namely the Pareto graph. 

3.2. 3.2 Sensitivity analysis 

The horizontal projection of the contact positions on the screw-roller 
and nut-roller interfaces of the DOE results is shown in Fig. 7. The blue 
asterisk represent the contact positions of sampling points and the red 
dot indicates that of the initial parameters. Fig. 7 shows that the contact 
positions of sampling points are distributed around the original contact 
positions and concentrated in a small area, and the contact radius and 
deflection angle of sampling points have changed. 

The Pareto graphs of the top ten parameters most sensitive to the 
contact characteristics on the screw-roller interface are shown in Fig. 8, 
where the blue and red bars represent the positive and negative effects 
respectively. 

Fig. 8(a) and (b) depict that βS contribute most to the deflection angle 
of the screw and roller, which have negative effect on the roller but 
positive effect on the screw. Besides, dR0, βR, PS and PR are also sensitive 
to the deflection angle, but their effects or contributions are somewhat 
different. In Fig. 8(c) and (d), dR0, βR and βS play a major role in the 

Table 1 
Contact characteristics of PRSM (F=300 N).  

Contact characteristics Unit Screw-roller interface Nut-roller interface 
Principal curvature in 

the 1st direction 
mm- 

1 
κS1 = − 3.7845 × 10- 

4κRS1 = 0.0763 
κN1 = 8.5970 × 10- 

5κRN1 = 0.0762 
Principal curvature in 

the 2nd direction 
mm- 

1 
κS2 = 0.0298κRS2 

= 0.1009 
κN2 = − 0.0178κRN2 

= 0.1010 
Curvature sum mm- 

1 
ΣκSR = 0.2067 ΣκNR = 0.1595 

Contact radius mm rSc = 24.1710rRSc 

= 8.0336 
rNc = 40rRNc = 8 

Contact deflection 
angle 

deg. αSc = − 3.6995αRSc 

= − 11.2727 
αNc = 0αRNc = 0 

Angle between the 1st 
principal planes 

deg. γRS = 39.8815 γRN = 40.0207 

Angle between xRS- 
axis, xRN-axis and x- 
axis 

deg. γRS1 = 17.4733 γRN1 = 23.9714 

Angle between xS-axis, 
xN-axis and x-axis 

deg. γRS2 = 22.3968 γRN2 = 16.0493 

Semimajor axis of 
contact ellipse 

mm aRS = 0.4201 aRN = 0.4584 

Semiminor axis of 
contact ellipse 

mm bRS = 0.2143 bRN = 0.2335 

Eccentricity of contact 
ellipse 

/ eRS = 0.8601 eRN = 0.8606 

Contact stress MPa σHSR = 2255.8601 σHNR = 1897.4493 
Contact deformation μm δHSR = 10.1134 δHNR = 9.2731  

Fig. 5. Principal directions and contact stress distribution.  
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contact radius between the screw and roller, while other parameters 
have little influence. The effects of dR0 and βS on the screw are negative 
but positive on the roller, and the effect of βR is exact converse. 

Fig. 8(e) reveals that the negative effect of dR0 on the curvature sum 
ΣκSR at the contact point between screw and roller accounts for 50.08%, 
while βR and βS positively contribute 39.23% and 9.00% respectively. 
Fig. 8(f) shows that βR has the most significant positive effect on the 
contact stress σHSR, followed by dR0 with greater negative sensitivity. 
Then, the positive sensitivity of the applied load F is basically consistent 
with that of the elastic modulus ER and ES. Therefore, a smaller contact 
stress can be obtained by reducing the applied load and elastic modulus 
based on Hertz contact theory. Furthermore, Poisson’s ratio νS and νR 

rank after βS, and they have a positive impact on σHSR. 
Similarly, the Pareto graphs for the contact characteristics on the 

nut-roller interface are shown in Fig. 9. It can be concluded from Fig. 9 
(a) and (b) that the most sensitive parameters to the deflection angle of 
roller and nut are PN, PR, dR0, βR and βN in sequence, in which PN, dR0 and 
βN have positive effects, while PR and βR have negative effects. Fig. 9(c) 
and (d) depict that dR0, βN and βR are the main contributors to the 
contact radius of roller and nut, and dR0, βN and PN are positive effects 
and the other two are negative effects. Notably, the influence of struc-
tural parameters on the contact position of nut and roller is almost the 
same, which is mainly caused by their concave meshing and equal helix 
angle. 

Fig. 6. Flowchart of sensitivity ranking based on DOE.  

Fig. 7. Projection of contact positions of sampling points.  
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Fig. 9(e) demonstrates that dR0 and βR account for 53.13% and 
41.72% of the negative effects on the curvature sum ΣκNR, respectively, 
and βN accounts for 4.07% of the positive effects. The parameters shown 
in Fig. 9(f) affect the contact stress between the nut and roller in the way 

similar to that in Fig. 8(f). 
In conclusion, the nominal diameter of roller dR0, the pitches PS, PR, 

PN and flank angles βS, βR, βN are sensitive to the contact radius and 
deflection angle, because they mainly determine the properties of helical 

Fig. 8. Pareto graphs for the contact characteristics on the screw-roller interface.  

Fig. 9. Pareto graphs for the contact characteristics on the nut-roller interface.  
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surfaces. Due to the difference between concave and convex contact, the 
contributions and effects of the above parameters on the nut and roller 
are almost identical, but the most sensitive parameter has opposite effect 
on the screw and roller. 

The contour maps of contact stress affected by dR0 and βR based on 
DOE results are shown in Fig. 10. Obviously, the larger dR0 and the 
smaller βR results in the lower contact stress, because it causes the larger 
radius of the arc thread profile of the roller, i.e., the less curved with 
smaller curvature sum. Meanwhile, by decreasing βR can also reduce the 
normal force acting on the contact point under a given load. 

3.3. Constraint conditions 

The multi-objective optimization of PRSM is carried out to obtain the 
smaller contact stress of screw-roller and nut-roller interfaces simulta-
neously. In order not to change the dimensions and transmission ratio of 
PRSM, the flank angles βS, βR and βN are selected as the design variables, 
denoted as β = (βS, βR, βN). The nominal diameter of roller dR0 and other 
parameters are taken as the design constants, denoted as CX. Then, the 
contact stress can be regarded the high-dimensional and multi-order 
nonlinear implicit objective function determined by β and CX, and 
expressed as σHSR =gSR(β, CX) and σHNR=gNR(β, CX). Moreover, the 
geometric constraint conditions are proposed to avoid such phenomena 
as thread overlap or stress concentration in the optimized PRSM, as 
shown in Fig. 11. 

Firstly, the threads of screw, roller and nut should avoid sharpened 
crown or intersecting bottom, and the constraints are 

{
PS − aS > 0
cS > 0 ,

{
PS − aS > 0
cS > 0 and

{
PN − aN > 0
cN > 0 (51) 

where aS, aR and aN are the root widths, and cS, cR and cN are the crest 
widths, and can be calculated as 
{

aS = hS + (dS0 − dS2)tan βS
cS = hS − (dS0 − dS1)tan βS

(52)  

{
aR = hR +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4re
2 − dR2

2
√

− dR0 cot βR

cR = hR +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4re
2 − dR1

2
√

− dR0 cot βR

(53)  

{
aN = hN + (dN1 − dN0)tan βN
cN = hN − (dN0 − dN2)tan βN

(54) 

Secondly, the thread of the roller should be avoided overlapping with 
the thread of the screw or nut. By substituting the coordinates of the 
contact point into the corresponding parametric equation, the axial 
clearance εSRc or εNRc between the thread surfaces to be contacted can be 
deduced as 
{

εSRc = ϕS(rSc) + αSclS/2π + ϕR(rRSc) + αRSclR/2π − PR/2
εNRc = ϕN(rNc) + αNclN/2π + ϕR(rRNc) + αRNclR/2π − PR/2 (55) 

Therefore, the constraint conditions for non-interference of threads 
in PRSM are 

εSRc > 0 and εNRc > 0 (56) 

Thirdly, the stress concentration caused by the contact at the crown 
of the threads should also be avoided. Referring to Fig. 11, the axial 

Fig. 10. Contour map of contact stress affected by dR0 and βR.  

Fig. 11. Geometric constraints in PRSM.  
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clearance from the thread crown of screw or nut to the corresponding 
helical surface of roller, denoted as εST or εNT, can be derived as 
{

εST = ϕR(dR0/2 − haS) − cS/2
εNT = ϕR(dR0/2 − haN) − cN/2 (57)  

where haS and haN are the thread addendum of the screw and nut 
respectively. 

Similarly, the axial clearance εRST or εRNT, from the thread crown of 
roller to the corresponding helical surface of screw or nut, can be 
expressed as  

{
εRST = (PR − cR − hS)/2 − haR tan βS
εRNT = (PR − cR − hN)/2 − haR tan βN

(58)  

where haR is the thread addendum of the roller. Additionally, haS, haR 
and haN are given by  

⎧
⎨

⎩

haS = (dS1 − dS0)/2
haR = (dR1 − dR0)/2
haN = (dN0 − dN2)/2

(59) 

In summary, the constraints for avoiding stress concentration are  

{
εRST > εSRc
εST > εSRc

and
{

εRNT > εNRc
εNT > εNRc

(60) 

Based on the above strong constraints, the mathematical model for 
multi-objective optimization on the contact stress of screw-roller and 
nut-roller interface can be expressed as  

Fig. 12. Multi-objective optimization history graphs of contact stress based on NSGA-II algorithm.  

Table 2 
Comparison of initial and optimal contact characteristics (F=300 N).  

Parameters Unit Initial Optimum Rate (-%) 
βS deg. 45 42.5388 5.4694 
βR deg. 45 40.4725 10.0612 
βN deg. 45 40.1249 10.8335 
QSR, QNR N 425.3123 395.4916 7.0115 
ΣκSR mm-1 0.2067 0.1911 7.5116 
ΣκNR mm-1 0.1595 0.1464 8.1786 
gSR(β, CX) MPa 2255.8601 2087.8859 7.4461 
gNR(β, CX) MPa 1897.4493 1744.8579 8.0419 
δHSR μm 10.1134 9.3779 7.2721 
δHNR μm 9.2731 8.5642 7.6441 
(rSc, αSc) (mm, 

deg.) 
(24.1710, 
− 3.6995) 

(23.8722, 
− 4.1559) 

– 

(rRSc, αRSc) (mm, 
deg.) 

(8.0336, 
− 11.2727) 

(8.3843, 
− 11.8005) 

– 

(rNc, αNc) (mm, 
deg.) 

(40, 0) (39.9948, 
− 0.0090) 

– 

(rRNc, αRNc) (mm, 
deg.) 

(8, 0) (7.9434, − 0.0242) –  
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Fig. 13. Contact stress and deformation on helical surfaces after structural design.  

Fig. 14. Comparison of the contact characteristics between the initial and optimized PRSM by FEM.  
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where βl and βu are the lower and upper limit of the design space 
respectively. 

4. Results and discussion 

4.1. Optimization results 

In the design space of [40
◦

, 50
◦

] considering transmission efficiency 
[8], the multi-objective optimization of contact stress of PRSM is carried 
out based on NSGA-II algorithm [13], in which the maximum generation 
and population size are 25 and 20. The history graphs with 501 itera-
tions in total are shown in Fig. 12, and each iteration is calculated by the 
parameterized program. The infeasible points indicated in red are those 
that do not meet the constraint conditions in the optimization process. 
On the contrary, the feasible points are displayed in black, and the one 
that minimizes the values of the two objective functions is the optimal 
point and is represented by a green pentagram. The optimal curve is 
shown by the fitted blue dash line. 

The comparison of initial and optimal contact characteristics under 
the axial load of 300 N is shown in Table 2. After optimization, the flank 
angles of screw, roller and nut are reduced by 5.47%, 10.06% and 
10.83% respectively, and the normal forces QSR and QNR are reduced by 
7.01% without changing the applied load. At the contact points of screw- 
roller and nut-roller interfaces, the curvature sum decreases by 7.51% 
and 8.18%, the corresponding contact stress decreases by 7.45% and 
8.04%, and the contact deformation also decreases by 7.27% and 7.64%, 
respectively. Additionally, the contact point between the screw and 
roller is closer to the axis of the screw while away from the roller, and 
the deflection angles of the two increase in the optimized PRSM. The 
contact point between the nut and roller deviates slightly from its initial 
position and is no longer on their nominal diameters. 

After the structural design of PRSM, the contact stress and defor-
mation of the corresponding two helical surfaces under different applied 
loads are further shown in Fig. 13. Compared with the initial structure, 
the optimal design can effectively reduce the contact stress and defor-
mation of the threads. Importantly, with the increasing sophistication of 
precision grinding technology [27], the structurally optimized PRSM 
can be manufactured by redesigning the corresponding grinding wheel 
profiles. 

4.2. Verification 

The finite element (FE) model of PRSM with the parameters of the 
numerical example is established in ABAQUS 6.14 to verify the validity 
of the mathematical model. As shown in Fig. 14, both the screw and nut 
are simplified to 1/10 sector portion of the overall structure with one 
thread, and the thread of roller only retain the contact parts. The linear 
hexahedral element type C3D8R is used to mesh the FE model, and the 
contact thread surfaces are further refined to reduce the calculation cost 
while ensuring the accuracy. After the grid independence test and 
convergence analysis, the global and local mesh sizes are set as 0.8 mm 
and 0.035 mm respectively, including 1723,991 nodes and 1599,652 
elements in total. 

Furthermore, the coordinates and contact surfaces of the screw, 
roller and nut are consistent with the numerical example. Both sides of 
the screw and the nut are symmetrically constrained, and the bottom 
surface of the screw is fixed with six degrees of freedom. Meanwhile, 

only the freedom on the z-axis of the screw, roller and nut is released. On 
the nut-roller interface, the master surface is assigned to the nut and the 
slave surface to the roller, while on the screw-roller interface, the master 
surface is assigned to the roller and the slave surface to the screw. 
Moreover, the interaction and contact properties for the standard 
surface-to-surface contacts are set as small sliding with a friction coef-
ficient of 0.2. To successfully establish the contact relationships, two 
static general steps are created. A small axial displacement of 0.5 mm is 
firstly applied on the nut to eliminate the clearance between the threads, 
and then replaced by an axial force of 300 N in the second step. The FE 
model of the optimized PRSM is also established in this way, and the 
comparison of FEM results is shown in Fig. 14. 

The xz view in Fig. 14 shows that the maximum von Mises stress is 
concentrated at a certain depth below the contact surface of the three 
parts and there is almost no stress distribution in the rest. Therefore, 
threads are more prone to plastic deformation or fatigue failure in 
PRSM. The von Mises stress nephogram in xy view clearly shows that the 
contact point between the nut and roller is basically located on the 
connecting line of their axis, while the contact point between the screw 
and roller is below that line. 

The maximum von Mises stress on the two contact sides of the roller 
decreased by 6.66% and 10.75% from the initial 1374.72 MPa and 
1192.23 MPa after optimization. Meanwhile, the initial contact stresses 
of the screw-roller and nut-roller interfaces are 2233.56 MPa and 
1893.87 MPa, which are reduced to 2081.89 MPa and 1731.79 MPa of 
the optimized PRSM, respectively. The above data show that these 
stresses can be effectively reduced through the structural optimization 
design of PRSM. 

Noteworthy, by comparing the contact stress, contact radius and 
deflection angle shown in Fig. 14 and Table 2, it can be found that the 
relative errors of the results obtained by the analytical method and FEM 
are all less than 1%. Besides, some additional numerical examples are 
performed, and the results are shown in Table A3 and A4 in the ap-
pendix. By comparing the results with the FEM solutions and published 
data, it shows that the relative errors are within the acceptable range, 
which fully verifies the validity of the mathematical model. Therefore, 
the proposed contact model can be used to calculate the contact char-
acteristics of PRSM with the change of parameters, especially in the 
iterative process of structural optimization design. 

5. Conclusions 

In this paper, the contact characteristics of PRSM are systematically 
and comprehensively studied based on the developed contact modeling. 
A process-based parameterization method is proposed to accurately 
calculate the contact characteristics with arbitrary parameter changes, 
which is further used for multi-objective optimization to achieve the 
structural design. The mathematical model is well verified by FEM and 
the published data. 

The results show that among the structural parameters of PRSM, the 
nominal diameter of roller dR0, the pitches PS, PR, PN and flank angles βS, 
βR, βN have great influence on the corresponding contact characteristics, 
especially βR and dR0 contributes significantly to the contact radius, 
curvature sum and contact stress. The sensitivity of these parameters to 
the nut and roller is basically the same, but the most sensitivity 
parameter affects the screw and roller in the opposite way. Under the 
proposed constraints of avoiding crown sharpening, bottom 

find β=(βS,βR,βN)

min σHSR =gSR(β,CX)&σHNR =gNR(β,CX)

s.t. { aS − PS <0;aR − PR <0;aN − PN <0; − cS <0;− cR <0;− cN <0; − εSRc <0;− εNRc <0;
εSRc − εRST <0;εNRc − εRNT <0;εSRc − εST <0;εNRc − εNT <0;βl ≤β≤βu (61)   
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intersection, thread overlap and stress concentration, the structural 
optimization design of PRSM with flank angles as the design variables 
can effectively reduce the contact stress and contact deformation of both 
screw-roller and nut-roller interfaces. The contact model proposed in 
this paper is universal, and the research results are of great significance 
to improve the contact performance of the transmission thread pairs. 
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Appendix 

See Appendix Tables A1–A4. 

Table A1 
Structural parameters of PRSM.  

Parameters Unit Screw Roller Nut 

Symbol Value Symbol Value Symbol Value 

Nominal diameter mm dS0 48 dR0 16 dN0  80 
Major diameter mm dS1 49.43 dR1 17.6 dN1  82.62 
Minor diameter mm dS2 45.38 dR2 14 dN2  78.57 
Thread thickness mm hS 2 hR 2.4 hN  2 
Pitch mm PS 5 PR 5 PN  5 
Flank angle deg. βS 45 βR 45 βN  45 
Starts of thread – nS 5 nR 1 nN  5 
External diameter mm – – – – dN3  100  

Table A2 
Material properties of PRSM.  

Random variables Unit Symbol Value 

Elastic modulus MPa ES, ER, EN  212000 
Poisson’s ratio – vS, vR, vN 0.29 
Yield limit MPa σs 1617 
Contact fatigue limit MPa σHlim 2450  

Table A3 
Contact characteristics with arbitrary structural parameters (F=200 N, elastic modulus 212000 MPa, Poisson’s ratio 0.29).  

Structural parameters Nominal diameter (mm) Flank angle (deg.) Number of starts Pitch (mm) 
Screw 48 43.2871 5 4.9999 
Roller 16 42.0761 1 5.0012 
Nut 80 42.6413 5 5.0004 
Contact pair (FE model in this paper) Contact characteristics Analytical solution FEMsolution Relative error 

Contact radius (mm) 24.0040 24.0208 0.07% 
8.2301 8.2359 0.07% 

Contact deflection angle (deg.) -4.0247 -4.0408 0.40% 
-11.6859 -11.6373 0.42% 

Contact stress (MPa) 1874.8247 1840.6982 1.85% 

Contact radius (mm) 40.0840 40.0897 0.01% 
8.0871 8.0774 0.12% 

Contact deflection angle (deg.) -0.0121 -0.0139 0.0018 
0.0242 0.0299 0.0057 

Contact stress (MPa) 1570.4866 1556.3491 0.91%  
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